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FOREWORD

This volume contains the detailed results of the navigation and guidance
analysis performed uncer contract NAS 8 11198 for Marshall Space Flight

Center. These results are summarized in Volume I of this report. The
tables and figured referenced in this volume are contained in Volume III
of this report.
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’ ABSTRACT

The primary objective of Contract NAS 8-11198 is to establish the
} basic requirements for an Advanced Spaceborne Detection, Tracking, and
Navigation System capable of performing interplanetary missions. The study
has been restricted to an analysis of navigation and guidance requirements
1 during the midcourse and orbital phases of a 1975 round-trip Mars mission.
The guidance and navigation requirements for the powered flight and/or atmos-
pheric maneuvering phases have not beén analyzed. The 532 day round-trip
trajectory which is used has high energies on both the Earth-to-Mars leg and

the return. A low energy Earth-Mars trajectory is also used to determine

- the influence of the trajectory itself on the results which are obtained.
Four navigation system configurations are evaluated under the assumption
that the observation data are processed with a minimum variance Kalman filter

to estimate the vehicle state.

The results of this evaluation for the Deep Space Instrumentation
Facility (DSIF) Tracking network (System I), shows that this system is
capable of an ultimate guidance accuracy at Mars of approximately +100 km.
This accuracy is obtained with present-day DSIF measurement capabilities
and under the assumption that uncertainties in bias error sources (e.g.,
tracking station locations and physical constants) will have been removed
by their estimation on earlier missions. Bias errors in the tracker station
locations of 100 meters east and north degrade the DSIF accuracy at Mars to
3250 km. These results are quite trajectory-dependent. The DSIF tracking

accuracy at Mars on the low-energy trajectory is +25 km.

The use of onboard theodolite or sextant navigation data in addi-
tion to the DSIF data (System II) improves the guidance accuracy at Mars
by approximately two orders of magnitude. The onboard observations taken
with this system are restricted in time to allow for (1) Earth-based

-1ii-
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computations of state from the data, and (2) ground command of midcourse
connections. A 12-arc-second instrument with the DSIF is capable of a

guidance accuracy at Mars of ¢+ 3.5 km. This system accuracy provides a

three sigma confidence of hitting a 21 km atmospheric entry corridor at
Mars. These results are obtained under the restrictions of the particular
observation schedule which is used and the assumption of no uncertainties
in the physical constants. Relaxing the instrument accuracy to 60 arc

seconds results in a guidance accuracy at Mars of + 9.1 km. The results

for this system are not highly trajectory-dependent.

System III is similiar to System II, but it assumes the addition
of an onboard computer which is capable of performing the navigation and
guidance computations. As a result, the period of time required to trans-
mit guidance commands from Earth can be used to obtain a better estimate of
the state before the maneuver is executed. This type of system, which
utilizes Earth-based tracking with a complete onboard navigation system,
could be used as a primary system for a manned mission to Mars. The results

indicate that System III is capable of a guidance accuracy of + 3.5 km at

Mars with an 18-arc-second instrument. The guidance accuracy with a 60-
arc-second is 1+ 7.9 km. On the Mars-Earth return trajectory, the use of

DSIF tracking alone provides a guidance accuracy at perigee of +2.2 km.

This perigee accuracy is sufficient to hit an atmospheric entry corridor
if it is required. 1In fact, the results indicate that, on the return
trajectory, there is no requirement for an onboard instrument with this

system. Also, these results are not highly trajectory-dependent.

The last navigation system which is evaluated (System IV) is rep-
resentative of the type of system which could be used as a backup in the
event of a ground communication failure on a manned mission. It has a

complete onboard navigation system with no reliance on Earth-based tracking

-iv-
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’ facilities. The results which are presented have been obtained with an
‘ ideal physical model and a particular onboard observation schedule for a
theodolite. The techniques used to select the schedule are presented in

the report. This system requires a 4-arc-second instrument on both the

outboard and return trajectories to achieve + 3.5 km end point guidance

! accuracies at Mars and Earth, With a 60-arc-second instrument, the

| guidance deviations at Mars and Earth are + 36 km and + 39 km, respectively.

The requirement of a 4-arc-second instrument to hit an entry corridor
can be altered significantly by including additional measurements or
changes in the observation schedule. If subtended angle range measurements
are taken during the approach to Mars and Moon observations are added to
the schedule on the Earth return, the instrument accuracy can be relaxed

to approximately 10-arc-seconds and a + 35 km guidance accuracy can still

be maintained at both Mars and Earth. The guidance accuracy of System IV

is slightly better on the low-energy outbound trajectory and the Venus

swingby return than on the nominal round-trip trajectory.

I

|

[ The guidance accuracies which are stated above, assume impulsive
velocity changes and have been obtained with a "nominal' guidance system.
The error magnitudes of this system are: (1) 0.5 degrees pointing error,
(2) 1 percent proportional error, and (3) 0.1 meter/second resolution
error. Using this guidance system and three corrections with Systems II
and 1II and four corrections with Systems IV, the deviations in the end
constraints are 10-20 percent larger than the error in estimate of the
constraints. A parametric analysis of the guidance system error sources:
indicates that the resolution error limits the performance after the final

correction.

The midcourse velocity corrections for System IV, with a 10-arc-

second instrument require 23 meters/second on the outhoused trajectory

-V-
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and 110 meters/second on the return trajectory. These velocity require-
ments are quite dependent on the initial velocity state deviations that
are assumed at injection from the Earth park orbit and upon leaving the
Mars orbit for the return phase.

The results which are obtained on a Venus swingby return trajectory
indicate that this type of trajectory does not require any special naviga-
tion requirements. The midcourse velocity requirements are approximately
250 meters/second, which 1s twice as large as is required on the direct
return trajectory. These velocity requirements are obtained by using a

| fixed time-of-arrival guidance law at both Venus and Earth.

The navigation capabilities of three of the basic systems are also
determined for the Martian orbit'phase. The results are presented in
terms of components of position and velocity uncertainties that are in the
orbit plane and normal to it, as well as in terms of the six orbital
elements. A study of DSIF tracking for various angles between the Earth-
Mars line and its projection in the orbit plane, shows that the best

accuracy for this system is obtained when the angle is 90 degrees.

The best overall accuracies for any of the systems are obtained
with DSIF tracking and sextant observations. This results in position
and velocity uncertainties of 0.2 km and 0.15 m/sec, respectively, at the
end of 72 hours of tracking. The onboard navigation system (System IV)
with only sextant observations can achieve accuracies of 0.8 km.
and 0.6 m/sec. The other navigation systems with DSIF and onboard radar,
subtended angle, and radar measurements result in significantly poorer
estimates in position and velocity. These results have been obtained
using the nominal park orbit. The angle between the Earth-Mars line
and its projection in the nominal park orbit plane is 6.0 degrees.

-vi-
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LIST OF SYMBOLS

input matrix for variational equations.
transformation from state vector to constraint vector.

correlation matrix between estimated state and unknown random
parameters.

matrix relating changes in the state at time t to changes in
the end-constraints at time T.

state matrix for the variational equations.

gradient of the measurement with respect to the state.

identity matrix.

Optimal gain for the Kalman filter.

covariance matrix of unknown parameters in equations of motion.

covariance matrix of the error in estimate of the vehicle state
after a measurement.

covariance matrix of measurement errors.

state transition matrix (relates changes in the state at ¢t
o
to changes in the state at tl).

control transition matrix (relates changes in the control at
t, to changes in the state at tl).

covariance matrix of the deviation state.

third-order covariance matrix of end-constraint deviations.

third-order covariance matrix of error in estimate of end-
constraints.

target miss vector.

guidance system execution error vector.
unit vector in orbit plane normal to V
unit vector along vehicle velocity vector.

unit vector normal to orbit plane.
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VECTORS

R

8 unit vectors of the target constraint coordinates.

2

t direction of zero LOS rate.

4 direction of maximum LOS rate.

U nominal control vector.

u deviation control vector.

v inertial velocity vector of vehicle relative to body of
greatest attraction.

x

' unit vectors of target centered coordinate system.

2

X nominal state vector.

X third-order position deviation state vector.

x sixth-order deviation state vector.

X mean value of x.

X estimate of deviation state

x error in estimate of deviation state.

gg optimal estimate of the state after an observation.

Y measurement.

y measurement deviation.

z expanded deviation state vector which includes equation of

motion and measurement error constants.

'SCALAR CONSTANTS, VARIABLES AND FUNCTIONS

a semi-major axis of an orbit.
E &(x)) expected value of the function of x.
e eccentricity of an orbit.
i orbit plane inclination.
L loss function minimized by the Kalman filter.
P(x) probability density function
q radius of closest approach for an orbit.
-viii-
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SCALAR CONSTANTS, VARIABLES AND FUNCTIONS

Vinf vehicle velocity at an infinite distance from a body.
AV " RMS values of required velocity at a guidance correction
A aT
= \/trace E(x % )
—~88
o a constant used to account for an onboard monitor for guidance
corrections.
B separation angle for two star-planet measurements.
8 reference direction for sextant measurements.
) true anomaly angle.
u gravitational constant.
o standard deviation (when used with a subscript, the subscript
denotes the quantity for which O 1is obtained).
w argument of perifocus.
Q longitude of ascending node.
%p standard deviation of pointing error.
OR standard deviation of resolution error.
o, standard deviation of proportional error.
-ix-
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SECTION 1

INTRODUCTION

1.1 GENERAL OBJECTIVES AND SCOPE

The primary objective of contract NAS8-11198 is to establish the basic
requirements for an Advanced Spaceborne Detection, Tracking and Navigation
System capable of performing future interplanetary missions. To achieve
this objective, the following tasks had to be completed:

a. Organize the study such that information is obtained which shows
i tradeoff between performance and system complexity, and can be

used to select a system for a given mission.

b. Derive suitable mathematical techniques for calculation of per-
formance.

c. Develop methods for data presentation which indicate accuracy
tradeoffs between various subsystems and components within a

particular system.

d. Determine the areas and components which require future research.

The scope of the study includes an evaluation of systems which utilize
Earth-based and onboard navigation, and combinations of the two systems.
The results which were obtained can be used to establish the capabilities

- of these systems to perform various missions. In order to make the problem
amenable to study, however, certain restrictions on the scope of the study -
had to be made. The following restrictions were either suggested by or
approved by MSFC personnel:

a. Primary emphasis and calculations are for the 1975 opportunity for
a round-trip to Mars. The trajectory includes a stay time of about
40 days in orbit about Mars at an altitude higher than the sensible

1-1
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Martian atmosphere (500 Km). The outbound flight time is 235
days, and the return flight time is 297 days. This restriction
was made at the start of the study because obtaining data for all

possible missions would not be feasible.

b. The covariance matrix of injection errors at the Earth is not stud-
ied as a parameter. This matrix, which is a function of the time in
park orbit at the Earth, is intended to be representative of the
capabilities of future launch vehicle guidance systems. The pri-
mary influence of this matrix is on the magnitude of the midcourse
velocity requirements at the first guidance correction.

c. The study emphasized the following phases of the mission:
1. Midcourse from Earth to Mars
2. Orbital navigation at Mars
3. Midcourse from Mars to Earth.
These phases are probably the most demanding on the sensor require-
ments if one neglects the inertial components required during the

accelerating (or decelerating) positions of the total mission.

1.2 STUDY FORMAT

The requirements of the navigation and guidance systems may vary conmn-
siderably depending on the mission itself. This study is designed to obtain
data that shows the tradeoff between onboard system complexity and the
guidance and navigation system performance that can be achieved. Four
navigation system configurations are considered; they vary in complexity
from one that depends entirely on Earth-based tracking and computations to
one that has a total onboard navigation capability. These four systems
could be used for missions that vary from a simple planetary flyby mission

to a round-trip manned mission,

The four navigation and guidance systems whose performance are analyzed

in this study are:

HILCO. WDL DIVISION
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a. §System 1
1. Onboard Equipment

(a) An attitude control system with a reference alignment
procedure

(b) Rocket motor for thrusting

(c) Command system for receipt of command signals for mid-
coursge maneuvers.

1 2. Earth-based Equipment
‘ (a) DSIF Tracking Network
(b) Computntion facilities
3. Typical Mission
(a) Planetary flyby
(b) Planetary orbiter

b. stem II
1. Onboard Equipment
(a) Same as System I

(b) Sextant or theodolite - Measurements restricted near
maneuver times to permit Earth-based computation

| 2. BRarth-Based Equipment
| (a) Same as System I
3. Typical Misgsions
} (a) Close Approach Flyby _
(b) Planetary Orbdbiter

c. System III
| _ 1. Onboard Equipment

(a) Same as System II
(b) Onboard radar

(c) Digital Computer which will be used during the terminal
part of the outbound midcourse phase, orbital navigation
phase, and the initial part of the midcourse return phase.
This system would allow rapid onboard calculations when
they are required during the rapidly changing portions of
the flight which occur at great distances (and consequent-
ly cause command time delays) from the Earth.

1-3
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2. Earth-Based Equipment
(a) Same as System II
3. Typical Mission
' (a) Manned round trip to Mars
(b) Planetary orbiter
(c) Lander

d. System IV
1. Onboard Equipment

(a) Same as System III with the exception of the command sys- |
tem; System IV places no reliance on Earth-based facilities.

2. Earth-based Equipment

(a) None; complete onboard system for all phases of the mission.
3. Typical Mission

(a) Manned Round trip to Mars

In order to make this report self-contained, a certain amount of intro-
ductory material has been included in Sections 2, 3, and 4, including the
theory of the guidance and navigation analysis; a description of the computer
simulation; and a description of special onboard navigation techmiques that
have been developed in conjunction with this study. The principal results
of this study that are presented in Sections 5, 6, and 7 have been obtained
from statistical error analyses of the outbound midcourse phase, the return
midcourse phase, and the orbital phase, respectively. Each of the four
systems is evaluated for the outbound phase; however, only systems III and
IV are considered for the return leg since these systems are representative

" of systems that could be used on a round-trip manned mission to Mars. The

orbital phase is studied independently of the two midcourse phases. Systems
I, 111, and IV are evaluated for this phase.

The instrument error data and the results of the different analyses
presented in this report are all one-sigma standard deviationms. The figures
and tables that are discussed in this report are presented in Volume III.

PHILCO. VDL DIVISION
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SECTION 2

THEORETICAL ANALYSIS OF THE NAVIGATION AND GUIDANCE SYSTEMS

The function of the navigation system, as defined in this report, is
to obtain an estimate of the vehicle state based on either direct observa-
tions of the vehicle (Earth-based tracking) or observations of celestial
bodies whose positions are known (onboard tracking). Since only midcourse
guidance corrections are studied in this document the function of the guid-
ance system is to eliminate state deviations from the nominal trajectory
at the end of the midcourse phase, according to a specific guidance law.
The complete analysis of both of these systems requires the use of ad-
vanced techniques. It is the purpose of this section, therefore, to in-
troduce the theoretical concepts and notations that will be used through-

out the report.

The use of linear analysis about a nominal trajectory is described at
the beginning of this section, and will be applied to all phases of the study,
This assumption permits the derivation of the state transition matrix, which
is essential in propagating both navigation and guidance system errors along
the nominal trajectory. This matrix is also useful in deriving guidance
laws, Three midcourse guidance laws are derived in this section based on
deterministic deviations in the state. However, since the state deviations
in general, are not deterministic quantities, the guidance corrections must

be made on the basis of estimates of the state.

Furthermore, it is the statistical errors in the navigation and guid-
ance systems that will be studied in this report. Therefore, the statis-
tical concepts of state estimation are introduced in this section. The
derivation of the Kalman filter, which is used to obtain a best estimate
of the state, is included, In addition, a method of propagating statis-
tical errors is discussed. Finally, the derivation of specific guidance
laws that are based on statistical estimates of state are derived, and the

guidance execution errors are discussed.

2-1
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2.1 EQUATIONS OF MOTION
It is assumed in this report that the trajectory of the space vehicle
can be defined by a set of nonlinear differential equations of the form

X = £(X, U, t) 2-1)

The nth-order vector X defines the state of the vehicle, U.is an ﬁth- order
vector defining the control motions, and t is the running-time variable.
In general, X will consist of the vehicle's position and velocity some
particular three-dimensional coordinate system. Rarely, however, can
these quantities be measured directly. Instead, quantities such as range,
range-rate, azimuth, etc., are observed by tracking stations. It will
therefore be assumed that the observed quantities can be related to the
original state X by

Y = G(X, t) (2-2)

In order to perform an analysis of systems represented by (2-1) it is
necessary to linearize these equations about a nominal trajectory. The
total state is then defined as the sum of the nominal state and a state
compogsed of deviations about the nominal, that is,

X = me + x
U=10 +u 2-3)
Nom
If (2-1) is now written as
xNom+*-f(me+ x, U+ u), (2-4)
and expanded in a Taylor series, the result is
of of
xNom+x £(x, U, t)+axx +auu + ey (2-5)
2-2
1ILCO. WDL DIVISION

STrs MtorGompany.,



WDL-TR2 629

where higher-order terms have been neglected and the partial derivatives
are evaluated for numerical values on the nominal trajectory. Subtracting
(2-1) from (2-5) yields the time-varying state equation for the deviations,

i-%ix+-g-lf-’u, - (2-6)
or
x = F(t) x + B(t) u. (2-7)

For n states and £ controls, F(t) is an n X n matrix and B(t) is an n X 4,
Bquation (2-7) is referred to as the variational equation.

Similarly, expanding (2-2) as
oG
Y+ y=G(X,t) + X x(t) (2-8)

and subtracting (2-2), gives the linear relationship between the deviation

state and the measurement deviation,

y=8 x =) x (2-9)

The solution of (2-7) and (2-9), for constant control increments over

the interval t, <t S t,, may be expressed as

1
(tz) = Q'(tz;tl) x(tl) + !u(tz,tl) u(tl), (2-10)
and y(tz) = H(tz) x(tz), (2-11)

where ®!is the n X n transition matrix which relates the deviation of the
state at t, to that at t,, and Qu is a n X £ matrix which relates the de-

viation of the state at tz to a unit variation in control at tl. The

HILCO. WDL. DIVISION
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elements of & and Qu are referred to as sensitivity coefficients. In gen-

eral, §, will be computed for large time intervals by numerical integration.

2.2 COORDINATE SYSTEMS

All simulations which are done on the digital computer for the tra-
jectory computations are done in the Earth equator and equinox of 1950
coordinates system. In order to permit a better physical interpretation
of the results that are obtained, however, these results will be presented
in a number of otﬁer coordinate frames. These coordinate systems are des-
cribed below.

2.2.1 Target Coordinates

This coordinate frame was used to define the nominal trajectory end
constraints for the Earth-Mars trajectory. It is target-centered at the
time of the trajectory arrival ( as shown in Figure 2-1) and is oriented
such that the x axis is directed toward the Sun, the z axis is normal to
the target planet 8 orbit plane, and the y axis is in the direction of
z X x. The x-y plane in this coordinate system is, therefore, nearly in
the ecliptic plane.

2.2.2. N V W Coordinates
This coordinate system 1s useful for describing the data which are

obtained in the study in terms of the trajectory plane. The coordinates

are shown in Figure 2-2A. The unit vectors N, V, and W are defined as

follows:
V=V ( along the velocity vector) (2-12)
. ¥l
WeRx¥ (normal to the orbit plane) (2-13)
IR X Vl
N=VxW ( in the orbit plane normal to the (2-14)
velocity)
2 -4
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- where i’ and ‘#:ure, respectively, the instantaneous position and velocity!

A A ’
| relative to the central body. The N-V plane is the trajectory plamne, and
! A
W is normal to the trajectory plane in the direction of the momentum.

‘ These coordinates are used to define the terminal constraints on the

| Mars-Barth trajectory at perigee. At this point, ﬁ and 6 are normal to each
| other so that the N, V, W coordinates become altitude (ALT), down-range (DR),
| and cross-range (CR), respectively, Figure 2-2B.

2.2.3 3 Vector Coordinates

!

!

|

t ‘ For certain types of guidance laws, it 15 convenj.:nt to express the
: miss constraints at the target in terms of the B vector. As shown in

[ Figure 2-3A, the origin of the B vector is the center of the target, and

’ its direction is such that it is normal to the incoming asymptote. The S
{ vector is directed along the asymptote. The plane containing the -B. is

| normal to Q and is the target miss plane. The orthogonal coordinates in

‘l this plane are % and l/i (Figure 2-3B). The orientation of @ and ﬁ in the
t miss plane may be chosen arkitrarily. For the end-point ; vector data pre-
! sented in this report, the T vector was selected so that it was in the

t trajectory plane, and ﬁ was normal to the trajectory plane. The end con-

’ straints for both the outbound and return trajectories vere; therefore,
I g A

- A
. BeT = |i| and BeR = 0. Deviations in these constraints are therefore re-

‘ lated to radius of closest approach and inclination, respectively.

2.3 GENERAL DESCRIPTIONS OF DETERMINISTIC MIDCOURSE GUIDANCE LAWS

The purpose of a midcourse maneuver is to correct a trajectory so that
it will satisfy a set of nominal end-point comstraints. The corrections are
required because of the error in the guidance system at injection. In this

section, three guidance laws are derived based on the state-vector notation

of the previous section and the assumption that the state deviations are

*The i vector is described and defined in Reference 3.

PHILCO. WDL DIVISION
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known quantities. In practice, these deviations are not known exactly and
therefore the guidance corrections are based on statistical estimates of
the deviations. The statistical analysis of the midcourse guidance system

will be shoﬁn in later sections based on the results of this section.

A typical midcourse situation for an interplanetary mission is shown

in Figure 2-4, where the true trajectory of the spacecraft at time B has
been determined by Earth-based tracking stations and it is desired to com
i pute the magnitudé and direction of a correction at B so that the vehicle
: misses the targeé by the same distance as the nominal. As an added pre-
caution for preventing the case where the deviation at C is zero, but the
vehicle collides with the target, additional correction may often be

used. For example, the correction at B may be applied to reduce the posi-
tion error at D, and a second correction may be applied to D to eliminate
the velocity deviation at c.*

’

motion for the vehicle are written agk¥

|

f

|

|

| | |

} For the purpose of deriving midcourse guidance laws, the equations of

|

|

}

} X = £(X,t) (2-15)
— -

!

|

Where the function, f, involves the inverse aquare law for the number
of bodies whose gravitational attraction is significant enough to effect
[ the trajectory, as well as gravitational anomalies (oblateness of Earth,

etc.) and possible external forces (solar pressure, etc.).

! Equation (2-15) is linearized about a nominal trajectory to obtain the
variation equations by expanding (2-15) in a Taylor series and neglecting

l higher-order terms. This results in an expression of the form

. .e af

E+x=£Exe0) +55x (2-16)

| * A tutorial example is included in Reference 2, where guidance laws are

| developed for a two-dimensional problem.

** An underline vector will in general denote a three-dimensional state vec-
tor, whereas one that is not underlined will denote a six-dimensioned state
vector consisting of position and velocity components.
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By subtracting nominal trajectory equation (2-15) from (2-16) the variational

equations are obtained as

L] f
TS F.(t) x (2-17)

These equations may be written as a set of first-order differential equa-

tions by defining the following states:

51’

1%
N
"
194+
._?4
]
.
N
(]
I

xnllo 1 x —1‘1 T
RXCK =R (t) (2-18)
X | Xy L""‘Z |

It is now possible to compute the transition matrix, Q(tztl), by integration
of the variational equations (2-18) along the nominal trajectory defined by
(2-15). The transition matrix is the sensitivity of the state at some time,
tz, to deviations in the state at an earlier time tl.

2.3.1 Fixed Time-of-Arrival Guidance Law

The guidance correction at a time when the spacecraft is at point B
in Figure 2-4 that will correct for deviations in the nominal trajectory
when it reaches D, can be derived in terms of the transition matrix

Q(TD,TB), and is partitioned into

8. @
#(1),Tp) =[—1 —2-] , (2-19)
3 %4
2-7
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’ then the deviation in position at TD due to deviation errors at TB,(E(TB))
’ and‘i(TB)), is given by

1) = | 2| = ¢ (Tp,Tp) x(Tp) + &,(T),T0) X(T,) (2-20)

Also, the effect of a velocity guidance correction applied at TB on the

} position vector at TD is

= ¢ X -
Since the purpose of the velocity correction at 'I‘B is to eliminate the

position error at TD the desired velocity corrections is found by equating
the sum of (2-20) and (2-21) to zero, and solving for_ig(TB),

-1

The derivation state at time TB after the correction then become.

lt(TB) _:_t(TB)

x'(TB) =

X(Tp) + £ (Tp) X'(Ty) (2-23)

Therefore, the required velocity correction at TD to zero the velocity

deviation at TC is given by
[ = -0 = - 1 L ] -
ety = -k = - [8, x@p + 2, & rp | (2-24)

2-8
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Thus the application of the guidance correction in (2-22) at TB and the
guldance correction in (2-24) at TD insures that the actual trajectory will
coincide with the nominal trajectory at point C. This is neglecting the
errors in the computation and execution of the maneuvers. This type of

fixed time-of-arrival guidance law, which controls the trajectory to the

nominal end position at the nominal arrival time, is used in the study.

An alternate set of contraints which would provide a fixed time of

arrival guidance law is

] ol
.
R R

= constraint vector
t (2-25)

where t = time.

The B e 'f and B e ﬁ constraints will control the approach asymptote of

the trajectory. The time constraint will cause the periapsis distance to
| vary from the nominal value so that the arrival time is controlled. This
type of FTA guidance law would control the trajectory to arrive at the
nominal time, but the end position would not be the nominal value. This
FTA guidance law was not used in the study.

2.3.2 Variable Time-of-Arrival Guidance Law
A second type of guidance law can be derived such that the vehicle

will pass the target in a prescribed manner but not necessarily at the same

-

time as the nominal trajectory. 1In fact, allowing the time of arrival to

be a variable generally requires smaller velocity corrections. A reasonable

set of contraints for use with a variable time of arrival guidance law is
BT
B. i = constraint vector
VN (2-26)
| 2-9
|
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where
2 2.2
Ve "V "R
R = Radius to center of target body
g = Gravitational constant of target body
V = Vehicle speed at distance R

The Be T and 301;. components of (2-26) will control the approach asymptote
relative to the target. The use of vINF as the third constant will then
control the radius of closest approach.*

The nominal trajectory constraint vector (2-26) is a function of the
end-point gtate and the end time

l il

T
R[ = £x,m) (2-27)

< w

INF

where X = Nominal end-point state

T = Nominal end-point time.

The constraint vector on an adjacent trajectory is obtained by making

a Taylor Series expansion of (2-27) and retaining only first-order terms.

BeT 5Be T

of of
BeR | + §Be R = f(X,T) +‘a—x x(T) + —a? AT (2-28)
VINF GVINF T T

Subtracting the nominal constraint vector (2-27) from (2-28) yields the

deviation constraint vector,

* Reference 4, Page 152.

2-10
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SBeT
SBeR| = %—é Lx('r) + -g—-,f, AT (2-29)
6VINF T

If the nominal trajectory passes close to the target body with the choice
of miss parameters given in (2-27) it is likely that £(X,T) will be inde-
pendent of T. This would be certain if the trajectory relative to the
target obeyed Kepler's equation and 18 expressed mathematically by

= 0. (2-30)

As a result of (2-30), Equation (2-29) can be expressed as

SBeT
§B o R =-§-§ x(T) = C(T) &(T;t) x(t) = D(T,t) x(t)  (2-31)
6v:l'.NF T

where C(T) is a 3 x 6 matrix of sensitivity coefficients relating the de-
viation in the constraints to deviations in the state at time (T). Equation
(2-31) may also be written as

SBe T
SBeR | = (Dl =| Dz) x(t) = D1 x(t) + D2 ic(t) (2-32)

GVINF

The effect of a velocity correction at time (t) would be to produce
a deviation in the constraint vector equal to D2 i:g(t). Therefore the gui-

dance correction is found by equating the sum of D _:Eg(t) and (2-32) to

2
zero and solving for _:::g(t).

2-11
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The result is

6Be T
- = - -1 B - -1 - - -
x(t) = -D," |tBeR D, D,x(t) - x(t) (2-33)
-

Equation (2-33) is the expression of the velocity correction required for

the variable time-of-arrival guidance law.

The quantity A T, which is the variation in the arrival time, can be
computed in the following manner. The constraint parameter ¢ is added; this
is assoclated with the nominal end-time T when the target constraint para-
meters are calculated. ¢ is the true anomaly which is a function of the
end time T. The variation in @ from its nominal value may be related to
deviations from the trajectory at any previous time as well as the varia-
tion in the end time, T , itself by the expression

28
3X(T)

A® 3 (T,t) x(t) + g—g AT (2-34)

By adding the constraint A 6 = O for all perturbed trajectories (i.e., the

miss vector for all perturbed trajectories will be evaluated at the same

value of © as the nominal), one may write equation (2-34) for A T.

-1
AT= -(%—g) (Sgi—m-) &(T,t) x(t) = A§(T,t) x(t) (2-35)

-1
= (98 09
where A <BT> (axa')) al x 6 row vector.

2-12

LDHILCO. WDL DIVISION

Ry Ford Moptor Gompany,



WDL-TR2629

2.3.3 Guidance Law for Minimum Midcourse Maneuver

The previous guidance law can be modified by computing a numerical

value for VINF such that the required A V maneuver is a minimum, rather than

controlling it to the nominal value.

The velocity correction as a function

of GVINF is shown in equation (2-33) and is repeated here with the matrix

D2 written in terms of its elements,

i g [B°F 81 %12 %3 [OBeT
58 = -D, BeR | = Ja,, a,, &, 6Be R (2-36)
| Vi 31 %3;2 %3] \Viw
! The magnitude of the correction is
? 5 ’
! oT . kad ~
; [‘,“8 _:_:8] [(au 6BeT + a,, BeR +a,, WINF)
|
‘ X X 2
' +(821 §BeT + a9 §BeR + 2,4, BVINF)
|
| A ) 271%
+(a31 SBeT + a5, BeR + a5, avm,) (2-37)

the result, zero gives

0= 2 (au 6Be T + a

+2 (331 6Be T + ‘32

Solving for 6VI in (2-38) yields

NF

Taking the partial derivative of (2-37) with respect to §V

2 §BeR + a

6BeR + a

INF and setting

13 Vw ) 83

+2 (‘21 0BeT + ayy EBeR+ ay, svmv)‘za

33 Vinp ) 233 (2-38)

PHILCO.
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i"n‘m ta),85 ‘31‘33) GBeT + (‘12‘13 Taydt ‘32‘33) B+ R
6v - s —
INF 2, .2, , 2
813 T 33 33
2-13 (2-39)
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1f the value of WINF from (2-39) is substituted into (2-36), then the re-
sultant correction is the value required for a variable time of arrival

guidance law with a minimum AV correction.

The three guidance laws that have been discussed in this section
are illustrated in Figure 2-5.

| 2.4 ERROR ANALYSIS

The success of most missions depends on whether the expected deviation
from the desired objective is within allowable bounds. An essential part
of the guidance analysis, therefore, is to determine the effect of guidance
component errors on the deviation of the vehicle state. By use of the
sensitivity coefficients, the error sources can be propagated to various
objectives in the missions. It is thus possible to determine which error
sources are significant and thereby improve the system design such that the
mission objectives are attained. The propagation of deterministic deviations
in the state have already been used to derive guidance laws. However, since

| the errors in a guidance system may often be of a radom nature, it is random
necessary to introduce certain statistical notations and definitions in

| order to derive the propagation of these errors in a linear system.

2.4.1 Statistical Definitions and Notatioms
The expected value of the scalar function f(x) is given by

+ o
E (f(x)) =f £(x) p(x) dx (2-40)

- ®
where p(x) is the probability density function which has the properties

+ ®

f p(x) dx = 1 2-41)

2-14
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and

B

fp(x) dx = probability that x lies in the interval
3 A<x<B (2-42)

For a gaussian or normal distribution, the density function p(x) is given

by
- ~(x - %)*
p(x) = e 202 (2-43)
V2no
where

x = E(x) = mean or average value of x

02 = E(xz) - 32 = variance

o ,‘/02 = gtandard of deviation.

For the vector function £(x), the expected value is
E (£, ()
E (f(x)) =|e (fz(lx))
E (£, () (2- 44)

and the gaussian or normal probability density functiom of x is given by

o EERTEH -0 (2-45)

P(x),%) -0 X)) = n}z %
(2m) |P|

2-15

PHILCO. WDL DIVISION

snaen o T M tor Gompansy,



l RMS Position = Ox = trace Px (2-48)
and
E RMS Velocity = 0. = trace Pg . (2-49)
: 2-16
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where

x=| . = E(x) (2-46)

and P is the covariance matrix

P = EB(x x?) - (x ;T)

CEx D - kD) ERE) - R .- .. REED - R
P o= : &%) - %
E(xx) - G N R T
(2-47)

P is a symmetric matrix, i.e., (Pij - Pji)’ Along the diagonal of P are the

variances of each of the components of x. The off-diagonal terms are

E(xx) - xx &4 p o0 where p_ is the correlation between the n and m
n m nm= 'nmm nm nm
components of x. The correlation ranges between the values -1 < Prun <+ 1.

|P| ig the determinant of the covariance matrix P.

If x is a sixth-order vector consisting of three position states and
three velocity states, then the RMS errors in position and velocity are given

by

o o %d_/l%'/ur(&mylmr{y,
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where Px and Pi are the upper-left and lower-right 3 x 3 submatrices of P
in Equation (2-47).

2.4, 2 Prggaggtion of Errors in Linear Systems

Although the actual orbit equations are nonlinear, it is again assumed

that for small perturbations about the nominal, the variational equations
can be written as '

x = F(t)x + B(t)u(t) (2-50)
The solution may be written as

x(t)) = 8(t 5t ) x(t ) + du (e3¢t ) u(e) (2-51)

for_g(to) constant in the interval to st s tl.

The initial errors for this system are statistically defined by

E (x(to)) x(t) (2-52)
E %(x(to) - :':(to)) (x(to) - ;:(t:c'))}.r = P(to) (2-53)
E'(uz(to) xk(to» = O for all £ and k (2-54)
E (u(to)) =0 (2-55)
E (u(t) u'(t)) = u (2-56)
2-17
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The effect of these errors at some later time (tl) is then specified by the
mean value of i(tl) and the covariance matrix P(tl). By (2-51) i(tl) is
given by

E (x(t))) = x(t,) = 3(ei5t ) E(x(t)) + du(e st ) B (g(to)) (2-57)
which, as a result of (2-52) and (2-55), is
x(t,)) = a(t,5t ) x(t) (2-58)
‘ also, if the error in estimate x, defined as
X=x - x, (2-59)
then by (2-59) and (2-51) ’i‘(cl) is

®(t)) = a(epse ) K(r) + g (b5t ) u(t), (2-60)

; " and the covariance matrix P(tl) is

P(c)) = (R Fe)) = (Fe) Fey) o (2-61)

+ o8 (e ) e ) )T 4 g (seep ¥ <c°>) ot
+ %u E (u(to) uT(to) )QuT

Finally, since the cross product terms in (2-61) are zero, substituting
(2-53) and (2-56) into (2-61) results in

T T
P(tl) @P(to) 3 + @uu @u (2-62)

[ 2-18
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Equation (2-62) provides a relationship for updating the covariance matrix
in a linear system. This is an important result, and will be used exten-

sively throughout the report.¥*

2.5 DETERMINING THE STATE

The discussion of guidance laws and error analysis in the previous
section has assumed that the vehicle state vector is known at discrete
points in time. The problem of determining the state from Earth-based
| observations or onboard equipment is considered in detail in this section.
[ Since, in general, one set of observations is not sufficient to define the
state, it is necessary to make a number of observations and then solve for
\ the equations of motion which give a "best' fit to the observed data. The
; solution to this filtering or estimation problem is given by Kalman (Refer-
ence 5) for linear systems. A derivation of the Kalman filter that can be
applied to nonlinear systems has been developed by Schmidt et al (References
6, 7, and 8), and is included for the case where measurement errors exist.
In addition, solutions are included for determining the effect of unknown
parameters without actually solving for them. These unknown parameters may
include bias errors in the equations of motion, or bias errors in the mea-

surements.

2.,5.1 Kalman Filter Derivation
It has been shown that an error analysis of a navigation system can

be performed if the estimate of the state vector and the covariance matrix

of the errors in the estimate are known. This section will derive these
| quantities on the basis that a Kalman filter is used in the estimation pro-
cess. The state deviations x(t), the estimate of the state deviations 2(t),
’ and the error in estimate of the state deviations X(t) are shown pictorially
‘ in Figure 2-5. The problem can be defined mathematically** as follows:

[ %* A detailed example which illustrates the use of the projected covariance
matrix for midcourse corrections is given in Reference 2.

[ *% Although P has been defined in (2-47) as the covariance matrix of (x-X)
| to illustrate the propagation of this quantity, it will henceforth be
used to denote (x-%), the error in estimate.

2-19
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Given:

l ﬁ(tl) = estimate of x

P(tl) E ((x—ﬁ)(x—ﬁ)T) = E(xxt) Covariance matrix of the error

in the estimate
l y(£) = Hx(t)) + 4 (t,)
q(tl) = random error in the measurement y(tl)

E(q(tl))

E(q(t1>qT(t1))

0

Q

Find:
a new estimate of the state, ;n(tl), 80 the following loss functiem is
minimized:

~ T ~ )

L E(x-xn) (x'an (2-63)
It should be noted that an initial covariance matrix of the error in the
estimate P(tl) and the initial estimate of x (i(tl)) are required. These
quantities may be determined by a least-squares fit (described in Reference
1). Also the derivation in this section assumes that the random variables
are gaussian.

The loss function may be written as

L= f (=) (x-% ) plxly, %) ix (2-64)

Taking the gradient of (2-64) with respect to ﬁn and interchanging order of
differentiation and integration gives

vL =fz(x-§n>'f p (xly, % dx (2-65)

2=-20
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Since in is a constant, the integration of (2-65) results in

vL = 2[ *p(x|y, %) dx - 23 (2-66)

By definition, the term under the integral is the conditional mean; there-

fore, setting YL equal to zero and solving for ;n yields

in = E(xly, x). (2-67)

Equation (2-64) shows that the conditional mean is the optimum estimate of
ﬁn for the loss function L of (2-63)

The conditional mean can be determined from the probability density
function \p(xly,i). p(x) has been derived in (2-45) as

aT -1 "~
_ 1 “H(x-5) [r (¢ )] (x-)
p(x) = e 1 (2-68)

where n = number of states and P(tl) is the covariance matrix of (x-X).

Also, the deviation of the observation y from its estimate is given by

y - y=Hx=X +q, (2-69)
the covariance matrix of this deviation is

- T T

E(y-y)(y-y)~ = HPH + Q, (2-70)

from the assumption
~ T.
E {(x—x) [q J} =0, (2-71)

2-21
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P(y) is therefore given by

. -5~ [mw" + o Fr-H (2-72)

e
(2n)n/2|HPH? + QI%

| p(y) =

where
n = number of observations. Similarly, P(ylx) is

' T -1
1 -%°Q q (2-73)
p(ylx) = p(q) = ———pm=—1 e
@m" 2|Q|
f By use of Baye's equation,
P(xly.5) = 2D P (2-74)

P(y)

Substituting (2-68), (2-72), and (2-74) yields

N - N "1 a\ - -
[ -DT MxD +al 9 - i@ + Q7 -9,
(2-75)

' p(xly, X) = Ae

where

%
T
_ lue® + gl (2-76)

A
(zn)nlle'%lP|%

.For gaussian random variable, the conditional mean given by (2-67)
is at the maximum of the density function (2-75). Therefore, taking the
gradient of the expoment in (2-75) with respect to x, setting the resultant

equal to zero and letting x = x gives

-0 29T @ + 07 o 9] =0 (2-77)

2-22
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Also since

y =Hx+gq, (2-78)
and

V™ H, : (2-79)
} solving (2-77) for in gives the desired result
!
} X =X +pu’ (upE + Q! (3-9), (2-80)

where y = Hx and y is the observation. Equation (2-80) shows the optimum

L new estimate.

It is also desired to determine Pn, the new covariance matrix of the

error in estimate, which can be expressed as

! E(x-x ) (x-xn)'r = E ((x-i) - K(y-ir)) ((x-i) - K(y-i')) , (2-81)

where the filter gain K is given by
K = PH' (uPH® + Q) ! (2-82)
Expanding (2-81)yields

| BGei ) (-2 )T = Ex® (xR - B (-HE
| -E K(5-$) =D 7T + £ R(3-P (5-H)TE, (2-83)

and letting y-y = H(x-X) + q, the terms of (2-83) are

2-23
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E(x-%) (x-%)T = P
E(x-x) (y-:'})TKT = E ((x-i)) ((x-i)THT + qT) KT
- Pﬁrir (since E(x-i)(q)T = 0)

E R(y-9) (x%)T = KE (H(x-R) + q) (x®)T = P

B K(y-3 (-9 = & [wee + o[ " | (2-84)

Substitution of the value of K from (2-82) gives

PHTK® = PHL(HPHC + Q) 'H P

KHP = PHE(HPH: + Q) 'H P

R(RPRE+Q)KE = PHT(uPHT + )~ 1(up® + Q) (wPH + Q) 'm P

PH (HPH® + Q)" H P. (2-85)

Thus, Equation (2-85) may be written as
E(x-% ) (x—in)T -2 =P- pHC(HPHE + Q)" H P (2-86)

The two results, Equations (2-80) and (2-86) are repeated below for con-

venience.

-~

% =&+ pr” (uPRT+Q) L (y-) (2-87)
B =P - PHE(HPHT + Q)" H P (2-88)

Equation (2-87) shows how the estimate of the state is modified by each new
observation y, and (2-86) shows how the covariance matrix of the error in
the estimate is reduced by each new observation. A second derivation of
these quantities which assumes a linear filter is given in Reference 2 to-

gether with an example problem.

2-24
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2.5.2 Parameter Estimation
In addition to estimating the position and velocity of the vehicle,

it is often desired to estimate unknown parameters. Some of the important

parameters which are applicable to this study are bias errors, which include:

| a. Station location errors

b. Speed-of-1light uncertainty

¢. Biases in measuring instruments and physical constant and forces,
which include:

1. The Astronomical Unit (A.U.)
2. Gravitational constants for planetary bodies

3. Solar pressure.

These unknown parameters may be determined by writing the equations of

motion as

F(X,U,t) (2-89)

>
[

! where X = vector of positions and velocities

U = vector of forcing functions plus unknown parameters in the
equations of motion.

The observations or measurements are, in general, related to X by
Y = G(X,V,t) + q* (X,V,t) (2-90)

where

V = a vector of unknown parameters
q* = random errors in measurement
Linearization of (2-89) and (2-90) about a nominal trajectory gives

el (o :
x BX] x + laU] u (2-91)
2-25
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26 26 -
y [ax] x + [av] v + q(t) (2-92)
The random error in measurement has been called q in (2-92).

Since a constant c obeys the differential equation

dc = : -
= 0, (2-93)

any unknown constants in the equations of motion or the measurements may

! be described be defining an expanded state vector

X 6x1
zalul = |Jmx1 (2-94)
v

nxl

where u has m unknowns and v has n unknowns. The differential equations for
z which include unknowns as defined by (2-93) are therefore

OF F
3X QU

f z=]o 0 ol = (2-95)
0 0 0

The solution of Equation (2-95) may be written as

Qx(t ,to) @u(t ,to) 0
z(t) = |0 I 0 z(to) - Q(t,to) z(to) (2-96)

0 0 1

With this definition of state, as many unknowns as desired may be included.

2-26
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The solution to the estimation problem is the same as given previous-
ly, that is
- )
n
- = = - T T -1 S -
z u z + Psz(HszHz-+ Q) (y-y) (2-97)
v ;
= ‘= T T =
Pzn Pz Psz(HszHz +Q 1Hsz J
i ~ -~ t A A \
| z(t) = z(t ) + f F(x,u,t)dt
o
r t O 5
| 0
. Teo. -
P,(t) = 3(t;e ) P (t) ¥ (t5t ) + B, J/ (2-98)

Equation (2-97) is for the improvement in estimate and the covariance matrix

of the error in estimate as a results of the observation y, and Equation

(2-98) is for updating the estimate and error in estimate between the obser-
vations. Bz is for inclusion of any random forcing functions which have
occurred in the time interval (to < t). & is calculated by numerical inte-
gration of the variational equations along the current best estimate of X
and U. It should also be noted that Pz is now an (6 + n+ m) by (6 + m + n)
matrix and includes not only the covariance matrix of the error in estimate

for x but also for u and v.

2.5.3 Effects of Unknown Parameters

As shown in the preceding section, there are no theoretical diffi-

culties encountered in actually solving for unknown parameters. The order

of the state vector, however, may become extremely large and thereby limit
the soltuions by onbéard computers. It is therefore very useful to deter-
L mine the effect of these unknown parameters, without actually solving for
them. A solution to this problem has been developed by Schmidt (reference
2) and the results of this method are summarized in this section for equation

of motion unknowns, or measurement unknowns, or both,
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For equation of motion unknowns, it is desired to determine the effect

of the unknown part of U in (2-89). The problem is mathematically defined as

Given: (1) E(x-®) (x0T = ()

f (2) x(t) = ¥(e5e ) x (£) + U(tst ) u (t)
(3 EGe® u =t

(4) E(u) =0

(5) E(uuT) =M

Find: (1) P(t) = E ((x(t) - x(t)) (x(t) - :‘i(t))T)
(2) c(t) = E ((xm - i(t))uT)
From (2-91) and (2-98) it is clear that the only influence of u will be

during the propagation of the covariance matrix of errors in the estimate
between observations.

The solution is summarized as follows:

Between observations

t

(0 =R + [ G 1, O
t
o

T T T T
P(t) = @P(to) & + @c(to) 5, t Quc (to)Q
T
+ éuMOEu
c(t) = @C(to) + &M (2-99)
At an observation Y
;n = x+ pErE + Q7' (y-9)
P =P- PHE (uPHE + Q) L(up)
n - (HPH™ + Q) "HC (2~
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As can be seen from (2-99), correlation exists for any value of time other
than t:o even when C(to) = 0. This is a result of the fact that the estimate

of the state x is dependent upon the unknown parameters in the equations of

motion,

The effect of quantities such as measurement bias errors, station

location errors, etc., affect the observation, as seen by (2-90). Therefore,

these errors would influence estimates of the vehicle position and velocity."
The problem of how to determine the effect of measurement errors is defined
as
Given: (1) x = an estimate of the state
(2) P = the covariance matrix of the error in estimate
= E (=% x0T
(3) C = the correlation between the error in estimate and
unknown parameters (C = n(x-i)vr)
(4) An observation y where
y = H(t)x + G(t)v + q(t)
: v = unknown parameter (constant)
’f q(t) = random error in measurement
| (5) The covariance matrix and mean value of the parameters v
E(v) =0
E(va) =W
(6) The covariance matrix and mean value of the random
errors which are not correlated with either v erA x
E(qQ) = 0
E(qq") = 0
Find: (1) A new estimate of the state in such that
L= E(x-;cn)?(x-in) is minimized
(2) The covariance matrix of the error in the new estimate
Pn = E(x-xn) (x-xn)T
(3) The correlation between the new estimate and the para-
meters .
Cn = E(x-x)V 2-29
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| The solution of this problem was derived in Reference 2, and is summarized
as follows:

At an observation: N\
x = x+ @+ Dy (-9
P =P- et + ceh)y Laap + ech)
c =¢C- et + ceT)y~ ! uc + ow)

y = HPH' + HCGT + GCTH® + GWGT + Q) (2-101)

| For updating between measurements:
1 t -+ )
x(t) = x(to) +ft xdt

o

~

P(t) = &(t;e) B(t)) ¥(ese)

c(t) = ¥(t;t ) c(e)

(2-102)
J :

| It is also possible to include the effects of both equation of motion
unknowns and unknown parameters in the measurements. These results for u

and v uncorrelated, E(u VT) = 0, are:

! For updating between measurements:

~ -~ t L] N
R(E) = x(e) + _/t'o P(x,D,, t)dt
' T T T T

P(t) = Q1>(a;°)§ +8 (t) & + éucux(to)@ + Qulﬁu $

Cox = chx(to) + @uu

Cox = ¥ (t) ) (2-103)

where

Gy = B ((x(E) = x(£))u")

c,, =E ((x(t) - 2(£))VD) (2-104)
| 2-30
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At an observation

xomxr @ e ) G HeHn )
- P o T T, ,=~1 T

P =P~ (PH +C_G)( H(HP+ GC_ ")

T T, ,=-1
Cox =Coy - (PH +cvxc Y )(Hcvx+cw)>

T T, ,s-1
C = Cux - (PH" + Cvxg PN 4 )(chx) (2-105)

where

y = HPH® + ncvxc'r + ccuTnT + CWCT + Q

3 Y 2y
| H = = " G =
ok | x= avl v_vo

W= E(VVT) M= E(uuT)

ox(t ox(t
() - |

2.6 COMPLETE MIDCOURSE GUIDANCE ANALYSIS

In the preceding sections, deterministic guidance laws have been derived
and the statistical concepts of state estimation and error propagation have
been presented. These concepts are now used to derive the velocity require-
ments based on the estimate of state deviations. The definition of state
deviations after a guidance correction and the guidance execution errors

that cause these deviations are also discussed.

2.6.1 Midcourse Velocity Requirements

In general, the precise deviation from the nominal trajectory is
not known. As a results, the guidance correction must be calculated on
the basis of the best estimate of the deviation i(t). The estimated

velocity correction ig(t) based on equation (2-33) is therefore
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.!:'tg(t> - - 11’51"1 | 1] x(t) = 6(T,t) &(t) (2-107)

where :'E(t) is the six-dimensional state deviation estimate.

The covariance matrix of the expected guidance correction at time
t is

E G = 6(r,0) BEROKOT 61,0 (2-108)

The covariance matrix of state estimate, E(i(t)i(t)r), may be expanded in
the following manner:

EGOOD = & [@®) - ) (xo - 7))

- e[ ] -E [FO (o) + 70|

- E [(Q(c) + %) 'i‘r(:)]+ K [?(:)?e""(c)] (2-109)

where the relationship X = x = x has been used.

If the covariance matrices of the error in estimate, ;(t), and the

deviation state, x(t) are defined as
| ~T
| P(t) = E(X(t) X (t)) (2-110)

PAR(t) = E(x(t) xt(t)) (2-111)

and E (:&T) = 0, then the covariance matrix of the state estimate in (2-109)
can be simplified to

E(x(t) xT(t)) = PAR(t) - P(t) (2-112)

2-32
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Substitution of (2-112) into (2-108) yields the covariance matrix of the

estimated velocity correction
E(x g:_EgT) = G(T;t) (PAR(t) - B(t) G (T;t) (2-113)

The RMS estimated velocity is given by

RMS AV =«/;race E(i T) (2-114)

g

NITE

| 2.6,2 Definition of a New Nominal
[ Previous derivations have assumed that the same nominal trajectory

would be used throughout the migsion and also that errors resulting from
the execution of the velocity correction are zero. In general, however, it
is desirable to compute a new nominal that will satisfy the end contraints
following the correction; also, the execution errors are not zero, and

therefore will now be considered.

The deviation of the state from the nominal trajectory following a

correction, xa(t) is given by

x,(t)

xa(t) =

x,(t) + _,:Eg + € (2-115)

where_gb(t),.gb(t) are the position and velocity deviation prior to the

correction, and

A

1 ~

| -gg + € = G(T;t) x (t) + €(t) = actual correction mode (2-116)
|

)

| €(t)= the error in carrying out the estimated velocity
‘ correction

} 2-33
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The covariance matrix of the deviation state from the nominal follow- '
ing a correction could be derived; however, this matrix is not very meaning-
ful. At a guidance correction (for either a fixed or a variable time of
arrival system) , a new nominal trajectory is chosen based on the estimate
of the state which satisfies the end constraints (at least in the linear

sense) .

The new nominal trajectory at time (t) after the correction is

Ko
R () = ib(o + (be(c)) (2-117)

the deviation of true trajectory from this nominal, using (2-115), (2-116),
and (2-117) is

~ - 0
x, (t) - x, (£) = x (t) = x(t) - x(t) + (e(t))
0
xnom(t) = 'i:"b + (e(t)) (2-118)

where xnom(t) = gtate deviation from the new nominal trajectory and will be

called x(t) in the presentation which follows.

The covariance matrix of the state deviation from the new nominal

then becomes

0 0
E(x(t) x(t)T) = PAR (t) = E(;a(t) ?c’i(t)) + I:OE(eeT)] (2-119)
o 0
or PARa(c) = Pb(t) + [0 E(eeT)] (2-120)

where E(?c'.beT) and its transpose are assumed to be zero.

Pb(t) = covariance matrix of error in estimate of the state

prior to the correction.
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The propagation of the covariance matrix of state deviations to the
end point PAR(T) is particularly useful when transformed into end-point con-
straints (C(T)), since it then indicates the constraint deviations after a
correction has been made. This covariance matrix PAR(T) in terms of end

point constraints is found by the use of (2-31), and is given by

| BetT]| [cBetT )T .

| E !|lwer]| |Ber = DEV = C(T) @('r;t)rna(t)QT(T;t)cT(t),
i V. &

\ INF INF (2-121)

where DEV is the 3 x 3 covariance matrix of the end constraint deviations.

The RMS position deviation of the 3 vector is found from the trace
of the upper left 2 x 2 in equation (2-121)

9p = /DEVn + DEV,, = RMS Position Deviation (2-122)

22

| 2.6.3 Midcourse Execution Errors
f The final derivation is concerned with the three sources of the mid-

course execution errors which have been defined as ¢ in (2-116). The errors

considered are the following:

a. Pointing errors resulting from the attitude control system which
: 18 commanded to align the body axis of the vehicle along that

direction determined by the guidance law.

b. Proportional and resolution errors resulting from the thrust
command system which ignites and cuts off the engine to give

the velocity magnitude determined by the guidance law.

The problem is to define a mathematical model of the errors introduced by

these systems.
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The errors caused by the thrust command system are the simplest
from which to form a mathematical model, and are considered first. The two
error types which can exist are classified as:
a. Proportional Error (kzig)proportionnl to the commanded velocity
- magnitude and in the direction of correction. Such an error

could be caused by

1. Uncertainty in the scale factor of the accelerometer (1f the

acceleration is nearly constant as it should be for the small

midcourse maneuver)

2. Uncertainty in an accelerometer bias value

"~
L]

X
b. Resolution Error (kz-—gr— independent of the velocity magnitude,
x
but in the direction of the correction. Such an error could be

caused by

1. Resolution of the integrating accelerometer pick off trans-

ducer

2. Uncertainty in the engine tail-off characteristics following
the shutoff command signal.

l Pfeiffer (Reference 9) has termed these two error sources as shutoff and
resolut lon, respectively. They will be referred to here as proportional

and resolution errors.

Following Reference 9, it will be assumed that these errors are
independent and, therefore, the total error resulting from the thrust
command system (neglecting second-order effects introduced by the pointing

errors considered later) is given by
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i A %
‘ = . —h -
tee Tl E I T (2-123)

x

=g
| and since k1 and kz are independent scalar random variables
| R
‘ T 2 23T x X
l E (etcetc ) = E(kl) E(x o=s ) + n(k ) E -—,..3— ) (2-124)
| Esl l.ig
}‘ @ ST

t o x R

| Letting E(xx ') = A and BB Sh =T (2-125)
‘ L |z | |%] v
| -8 -8
|
’? E(klz) = 0‘2, proportional error variance (2-126)
|
| E(kzz) = ci resolution error variance (2-127)

The covariance matrix of the errors resulting from the thrust system is
| therefore given by

T

=2 -
€ e ) cA+o Ty (2-128)

E(

where the quantity A is given by E(igigT) in (2-108). The method of cal-
culation of r‘v is described in Appendix A.

A mathematical model of the pointing errors introduced by the atti-
tude control system derived in Reference 9 is somewhat more restrictive than

the above. The basic error sources are the result of:

a. The accuracy of the attitude reference from which the maneuvers

are made

b. The accuracy of the aligmment of the thrust and body axis of the

vehicle

c¢. The accuracy of the system in carrying out the commanded maneuvers.
2-37
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! The model given in Reference 9 applies only to error sources (a) and (b),
and is quite approximate in its treatment of these errors. As a result
of the mathematical difficulties involved in considering an error source

of type (c); an adequate solution has not been found.

’ If the assumption is made that the attitude errors can be represented
' by a cone about the commanded velocity vector where the direction is equally
likely, then a mathematical model can be readily derived.

The derivation of the pointing error is given in Reference 9, and

ig8 as follows:

! Let © F'u be a random three-dimensional vector with zero mean and equal
; probability in any direction, Op is a scalar and u is a unit vector

b
|
|

% [E x GJ is a vector lying in a plane normal to the commanded
velocity direction,

~ ) T . ‘_‘1
8o, (2, x50, (% xu] =02 B[k, @) w'(x, @1F] (21299
| where " ’
[:’tg ®] = a matrix (2-130)
Since u is independent of ';::g
and E[w'] =1 (2-131)
then,
2 _[% [z JT_ 2 : s T
oy E [.’_‘8®]“‘-‘ [58(3] =0, E [[ _ggﬂ ] [580] ] (2-132)

and using the matrix identity

[v@] [V®]® = [vivI - w']. (2-133)
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| The covariance matrix of pointing error Ap is then found to be

A - crpz [Trace of AT - A] (2-134)
} If the original density function apu is assumed to be gaussian, then the

1 probability density function of the half-cone Y is a Rayleigh density

| function given by

‘ | 2
} P(Y) = e - -J% (2-135)
‘ o 20
[ P P
f
} and the probability distribution function for Y is
| Y
| Y o 2
| p(L2) <[ 9 R 1-e-X— (2-136)
() 2 2
P 20 20
o P p

This distribution curve is shown in Figure 2-7. If some idea of the
attitude control system capability is known, however (e.g., that the half-
cone angle would be less than 1° with a proability of 0.67), then the dis-

o
tribution curve shows that g should be set such that-l— = 1.5 or
20 P Sp
p 3 °

g
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SECTION 3

DESCRIPTION OF THE DIGITAL COMPUTER SIMULATION

In order to accomplish the objectives of this study, it has been neces-
sary to build a digital computer program which has the capability of simu-
lating both the navigation and the guidance systems for an interplanetary
mission, The program enables the statistical errors resulting from the guid-
ance and the navigation systems to be studied in terms of their effect on
the mission requirements by using linear perturbation theory. Some of the
important functions that the program must perform are : (1) the computation
of transition matrices along a nominal trajectory, (2) the processing of ob-
servations from Earth-based or onboard tracking, (3) the estimation of the
vehicle state using the Kalman filter theory, (4) the specification of guid-
ance corrections, and (5) the propagation of deviations resulting from guid-

ance errors to the end-point on the trajectory.

The Conic Error Propagation Program (CEPP) has been used for this study.
It is a combination of subroutines previously developed at Philco WDL and
subroutines that have been developed for this study. 1In particular, the
subroutine for computing transition matrices has been changed in this pro-
gram as the result of numerical difficulties experienced with the precision
program. A flow chart of the various subroutines used in (CEPP) is shown in
Figure 3-1. This program has been written so that it may be used in conjunc-

tion with the Quick Look Programs (See References 10 and 11).

The Advanced Error Propagation Program (AEPP) now under development at
WDL (Reference 12) also has the simulation capability required for a study
of this type. It is mentioned here because it has a greater flexibility
and capability than the CEPP. With AEPP, it will be possible to consider
bias error sources and either solve them directly or determine their effect
on the state estimate. In fact, this program has been used to evaluate the
station location bias errors which will be discussed in Section 5. 1In this

section the features of the CEPP are described.

3-1
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3.1 THE NOMINAL TRAJECTORY

It has been found that the nominal trajectory is sensitive to the eighth
figure of the starting value of the injection position and velocity. The
sensitivity of the end-point position to initial conditions is on the order
of 10° km/km for position and 108 km/km/sec for velocity. Therefore, for
injection from Earth park orbit with a radius of 6500 km and a velocity of
15 km/sec, the significance of the eighth figure of position and velocity in
terms of position variations at the target is on the order of 10 km and 100
km, respectively. This caused a problem in the integration process used to
find a precision nominal trajectory. For example, if the integration is
stopped in the middle of the trajectory (such as at a guidance correction),
and then restarted, the round-off error results in a different end-point
than would have been obtained if the integration had not been stopped. As
a result of these difficulties, the CEPP uses a patched conic for the nominal
trajectory. This produces better results since the problem can be re-
started at various points and the same end-point values obtained (the tra-
jectory was rectified at each patch point); also, this program is faster than

integrating the n-body trajectory. The three conic sections from Earth;
to Mars (Earth-centered, Sun-centered, and Mars-centered) or Mars to Earth are
input data which are obtained from the Quick Look Programs. (References 10

and 11).

The inputs for each conic are:

Body center (Earth, Sun, Mars)
Date (Year, Month, Day)
Fractional Date (Hours, Minutes, Seconds)
Time Length of Conic (Seconds)
Time of Coordinates (Equator Date, 1950, Ecliptic)
Vehicle State X, Y, Z, X, Y, 2)
3-2
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The patch distances which were used to obtain the trajectories

! are the following:

Earth 925,000 KM Patch Distance
' Moon 66,000 KM  Patch Distance
Mars 565,000 KM Patch Distance

The ephemeris which was used for the planets was the JPL ephemeris

tape (Reference 13), which is in Earth equator of 1950 coordinates. The
computations, therefore, were carried out in equator of 1950 coordinates using

kilometers and kilometers/second.
3.2 THE TRANSITION MATRIX

The subroutine for calculating the transition matrix & (T,t) is one of
the important computations used in this stady. It is used for propagating
estimates of the vehicle state resulting from injection errors and guidance
errors, to the end-point for each phase of the mission. It is, however, a

computation that has resulted in a number of problems in earlier studies.

Methods of computing & (T,t), as well as problems that have been experienced

in the use of these methods, are described in the following paragraphs.

The transition matrix & (T,t) is computed in the Interplanetary Error
Propagation Program (IEPP) (References 14 and 15) by the following method:

$(T, ) = #(T,e ) 87N 0t )

(T, £)) = 8(T,t)) 7 I(e,E)) (3-1)

.

j Q,(T,tm) = Q(T,tm) Q-l(tm,tm_l)s

where the times tl’ tz ces tm represent points at which results are printed

; out or guidance corrections are made. The inverse matrices in (3-1) have

| 3-3
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been calculated directly using a single precision inverse subroutine. An

alternate method for inverting § is given by relationship

3 T . T
1 12 %27 %2
6 = s L= : (3-2)
3 L T
21 292 &,

Numerical difficulties have been experienced in both methods. For long
time intervals along the trajectory (10 days), the elements of & become

large, with the result that inverse matrices become inaccurate.

To improve the numerical problem described above, a transition matrix
has been used in the CEPP which is obtained from a closed-form analytic
expression (Reference 16). These analytic expressions for the transition
matrix are valid under the assumption of a conic trajectory. A comparison
of the closed-form transition matrix and one obtained by integrating the’
variational equations from injection to the end-point along a precision
n-body trajectory (no inversions are required and therefore this method is
quite accurate), showed that the two matrices agree to within 2 percent.
The use of the closed-form expression for the transition matrix allows rapid
calculation of the matrix from any time (t) to the end-point time (T), and
does not require the inversion shown in 3-1. It has been found that replacing
the n-body trajectory integration by a patched conic trajectory and using the
closed form transition matrix increases the speed of CEPP over IEPP by a factor

of two.

3.2.2 Navigation Capability

The CEPP, which is shown in block diagram ferm in Figure 3-2, has the
capability of simulating onboard navigation, Earth-based navigation, or a

combination of both.
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The Earth-based tracking capability consists of three tracker stations.
Each station can make the following measurements when the vehicle is above

the station horizon:?

a. Range

b. Range-Rate
c. Azimuth

d. Elevation.

There is a random error associated with each type of observation for each

i station. The magnitude of these errors are inputs to the program.

The onboard measurement capability consists of the following types:

b. Range-Rate
c. Theodolite (right ascension and declination)

i
T
E a. Range (Radar)

d. Sextant (Star-Planet Angle)
e. Range (Subtended Angle).

’ For each of these measurements, there is a random error which is an input

to the program. The result of an observation is expressed mathematically

by

y=Hx+q, (3-3)

where y is the measurement
H is the gradient of the measurement with respect to the state
x is the deviation state

q 1is the random noise in the measurement

' The optical instruments (Theodolite and Sextant) which are described in

Section 4 have an error model of the form:

o= v & +ud (sl Skl (3-4)

: : 3-5
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where ¢ is the standard deviation of the measurement error q. This error
model is discussed, and error curves for the planets of interest in the

study are presented in Section 4.

These different navigation measurements may be grouped in any desired
combination by the input control. The influence of these measurements is
included in the covariance matrix of the error in estimate of the state
P(t) at the appropriate times under the assumption that the data are being
processed with a Kalman filter. This results in a new covariance matrix, P,

which is given by (2-88) and a new estimate of the state x given by (2-87).
Between observations, the covariance matrix of the error in estimate is

propagated along the nominal trajectory using linear perturbation techniques.
This is expressed by

P(t;) =¥(c,,t) B(t) @T(tl.t) (3-5)

The errors in estimate data are output for the present time (t) and also

the end-point time (T). The following quantities are output at-each time:

RMS Error in position estimate (time, t, X, Y, Z)

RMS Error in velocity estimate (time, t, *, f, i)

RMS Error in end position estimate (time, T, B°T and B*R or XYZ)
Error in end constraint estimate (eime, T, V)

The error in estimates of the terminal constraints is determined by the

equation

P'(T)= C(T) (T,t) P (t) 8T (¢) cT¢p (3-6)

where P' (T) is a 3 x 3 covariance matrix of the error in estimate of
the end constraints
C(T) Point transformation from the state to the end constraints
G(T;t) ngnsition Matrix
P(t) Covariance Matrix of error in estimate of the state at

time (t).
3-6

PHILCO. WDL DIVISION

At Mot S v hnns



WDL-TR2629

3.2.3 Guidance Capability

The CEPP guidance routines are entered after the navigation is
completed at a given time point as shown in Figure 3-2. The program is
capable of using either of two guidance laws: Fixed Time of Arrival (FTA)
or Variable Time of Arrival (VTA), both of which are described in
Paragraph 2.2.2. '

When the VTA guidance law is being used, the program also computes
- A - A
the minimum velocity correction required to control B'T and B*R to their

nominal values.

The program is capable of making six corrections along the trajectory.
The correction times are input to the program, and are assumed to be step

changes in velocity. There is no powered flight simulation.

There are three error sources includgd in the onboard simulation
of the control system and thruster: (1) pointing error, (2) proportional

error, and (3) resolution error. These errors may be written as:

€ PROP = k1 x error proportional to velocity correction
and in the direction of the correction

x
€RES k2 . error independent of velocity correction
ngl but in the direction of correction ‘
€ =k, u X error proportional to velocity correction
PT 3 g

and in a direction normal to the correction

~

u is a vector. The magnitude of the three constants associated with these

errors are input to the program.

The simulation also has the capability of including onboard

instrumentation to monitor the corrections. This enters into the

3-7
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simulation at the times a correction is made. It provides the capability

of increasing the error in the estimate of the velocity state by a fraction

of the error in execution of the maneuver. The effect of the monitor is
determined by the value of » in the equation

Paew = Forp T ¢ (3-7)

! T
10 E(ee )
L
where E(eeT) = covariance matrix of guidance system execution errors and
0 <sa<1.0.

The quantity, @, is input to the program. The covariance matrix of the

expected guidance correction at time (t) is obtained as follows:

A A

E(ggégT) = G(T;t) [éAR(t)-P(tﬂ GT(T;t) (3-8)

A special guidance routine was designed to permit the parametric
| study of the three guidance system error sources. The navigation data
; for a system of interest is input to the program in the form of the co-
variance matrix of error in estimate of the state at each time a correc-
tion is made. The state deviation matrix (guidance data) is then propagated
' ‘ through a maximum of four corrections. The variances on each of the guidance
. system error sources can be stepped through a range of values at each correc-
tion point. The range of values and size of steps are controlled by input.
[ A sample of the data is shown in Paragraph 5.4.4. In this mode of opera-
tion, it is possible to make 250 guidance data runs to Mars in five minutes

of computer time.
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SECTION 4

ONBOARD MEASUREMENT TECHNIQUES

4.1 INTRODUCTION

The overall function of the navigation system, as defined in this study,
'is to determine the best estimate of the vehicle's position and velocity.
An important part of this estimation process is the set of observations of
the vehicle state which may include range, range-rate, altitude, the angle
from the center of a planet to a star as observed from the vehicle, etc.

At each observation the measurement is represented by

y=Hx+q (4-1)

where the two parameters h and q are, respectively, the measurement gradient
respect to the state, and the measurement noise. The analysis in this sec-
tion is concerned with determining the relationships between the measure-
ment parameters h and q and the accuracy of the state estimate. Since
these parameters are automatically specified for a given Earth-based track-
| ing system, this section considers only onboard tracking. Measurement
accuracy, celestial body selection, navigation instruments, and star selec-

tion are considered. Although the analysis applies directly to the outbound

leg of the midcourse phase, the techniques that are used are sufficiently
| general that they apply to onboard measurements for the other phases of
! this study as well as any other interplanetary mission. The techniques of
onboard scheduling in this section are treated in more detail in Reference
17.

4.2 SIGNIFICANCE OF THE MEASUREMENT GRADIENT

The problem of defining an observation schedule for navigation systems
that contain an onboard tracking capability is considerably more difficult
than for systems that rely on Earth-based tracking. There is a much wider
choice of observations that can be made onboard as well as more restrictions

on the number of observations that can be taken and processed. Each
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observation, in fact, may impose a penalty on the spacecraft system because
l of: (1) the fuel required to make a maneuver and hold an attitude during
an observation, (2) the reliability of the control system, or (3) the
measuring instrument itself. It is, therefore, important to establish the
effect of a particular observation on the estimation of the state. The
change in the state estimate with the inclusion of an observation for the
Kalman filter has been derived in Equation (2-87), and is repeated here for

convenience;

=&+ PP + Q"L B (y-$) (4-2)

2‘>

where
is the new state estimate
is the old state estimate

is the measurement

w <o’

is the estimate of the measurement.

The vector change in the state estimate at an observation, Ai = P(HPH? + Q)-1
HT(y-§), may be divided up into two orthogonal vectors, one in the direction
of the gradient vector, H, and one normal to it. Using projection operators

on the vector Ax, these two vectors are obtained as follows:

P T
T 2 - (-¥) h
(h"h) Ax = Ax, = ’ (4-3)
xﬂ 1+ _-g_'f IHI
HPH™
\
~ T
T - - P (-3 \ h
(I - hh) 8x = 0%xs ={—x -1 . (4-4)
B\ 1+ —Q—Tﬂ“'
HPH
where
AxH = change in state estimate along H direction.
Aﬁﬁ = change in state estimate normal to H direction.
H s
h -TET unit row vector in direction of H.
4-2
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Equations (4-3) and (4-4) illustrate two characteristics of the H vector.
Equation (4-4) shows that if the covariance matrix of erroré in estimate,
P, is diagonal with equal variances on all states, P = 02 I, the only
improvement in the estimate occurs along H. The vector Aﬂﬁ is zero in this
instance. In the case of a general covariance matrix, there is, because of
the correlation between states, an improvement in the estimate along H and
also normal to it. The second characteristic of H which is of interest is
the manner in which its orientation affects the magnitude of the vector
change in the state estimate in both the H direction and the space normal

to H. As shown in (4-3) and (4-4), each vector is scaled by the factor

1

(4-5)
1+ -

HPH?

The quantity Q is the variance of the measurement due to the errors in the
instrument being used. The quantity, HPHT, is a scalar which indicates the
variance in the measurement due to the uncertainty in the estimate of the
state. The following limiting cases are of interest in evaluating this

scale factor:

Q > HPH! —E— = 0 (4-6)
1+ 2
HPR
T .
Q << HFHX ————— = 1 47
1+-3--m,H

The first case corresponds to a very poor instrument or measurement along a
direction in the state space which has a very small uncertainty associated
with it. This measurement would provide little or no information. The

second case illustrates a very fine instrument or measurement along a direction

of large undertainty or both. It can be seen, therefore, that for a given
4-3
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instrument accuracy, Q, it is desirable, if possible, to select the grad-
ient of the measurement (H) so that it will be along a direction of large
uncertainity in the six-dimensional state space. An objective of select-

ing a set of measurements would be to have the gradient vectors corres-
ponding to the measurement set span the total six-dimensional state space.
This would then allow estimation of the total state. This is not in general
required, however, because correlations between states which occur due to the
equations of motion allow a state to be estimated without actual observation
of that state (Equation (4-4) ). For example, velocity information can be

obtained from smoothing position measurements.

The above discussion has been presented because once the type of
navigation measurements is selected, the scheduling of the measurements is
the only control that can be exercised over the gradient vector H orienta~
tions. The gradient vectors for the measurements which were used in the
analysis are shown in Table 4-1.* The directioné of these vectors can be
used as aids in setting up the measurement schedule, and are particularly

useful in selecting an onboard observation schedule.

4.3 ONBOARD NAVIGATION INSTRUMENTS

A primary consideration for onboard tracking is the instruments which
are used to make the observations. In general, the two categories of on-
board instruments that can be used for determining position and velocity

are:

a. Radar-type Devices. In their simplest form these devices may pro-
vide measurements of altitude and altitude rate. In more complex
forms where several devices are coupled with an inertial refer-
ence, it is conceivable that one could obtain the following ad-

ditional quantities:

Derivations of these gradients are presented in Appendix B.
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1. Direction of the apparent local vertical in inertial coordinates

2. Velocity relative to the surface and inertial direction of this

velocity vector.

b. Optical Type Devices

1. Scanners (Visible or Infrared Region). These devices are gen-

erally automatic, and can be arranged such that their optical

center remains near the center (or rim) of a celestial body of
the solar system. If the device is combined with an inertial
reference platform, the inertial direction is obtained. With

other modifications the subtended angle can also be obtained.

Another scanner possibility would combine the instrument with
a star tracker. The star tracker will establish an inertial
direction, and an appropriately designed and mounted planet'
tracker could provide the angle from the star to the planet

rim or center.

2. Theodolite. This device may be used on manned space vehicles
where the man directs the theodolite to the apparent center of
the body in the solar system. If the theodolite is mounted on
an inertial platform, then the measurements possible are the
directions (two angles) of the celestial body (apparent center
or landmarks) in a known inertial reference system. Modifica-

tions could also allow the measurement of the subtended angle.

3, Sextant. This device is also used on manned vehicles. It has
the capability of measuring a single angle. One can measure
an inertial angle (e.g., from some star to the apparent center,
rim, or a landmark of a body of the solar system) without the
need of an inertial reference platform. An appropriately de-
signed sextant can be used for a variety of purposes in addition

to the above such as:

4-5
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(a) Measurement of the subtended angle of the body, or per-

haps the angle between two landmarks

(b) The angle between two given bodies of the solar system.

In addition, the instrument may be calibrated omnboard by star-

to-star measurements.

c. Photograéh of the Celestial Body In The Solar System In The Star
Background. The reduction of the photograph by the onboard per-

| gsonnel can provide the inertial direction (two angles and perhaps

the subtended angle of the body).

Since the radar devices are restricted to use in the immediate vicinity
of a celestial body, the measurement schedule developed in this section
will assume the use of an optical device. The analysis applies to either:
(1) a theodolite which measures the direction of the line of sight (LOS) to

a planet or the Sun, or (2) a sextant which measures the angles between a

planet and a star.

For the onboard measurement instruments that have been selected, it is
possible to develop a measurement schedule that is based on: (1) position
measurement accuracy associated with a planetary body, (2) the positions of
the planetary bodies, and (3) the selection of stars for use with sextant
measurements. The position measurement accuracy specifies the numerical
value of the error in a single vehicle position estimate when using a speci-
fic body. The selection of planetary bodies and the stars determines the '
| direction of the H vectors associated with the measurements such that a
maximum amount of position and velocity information is obtained from each
of the six dimensions of the state space. The remainder of this sectiomn

is devoted to developing a measurement schedule for the midcourse trajectory.

‘»
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4.4 MEASUREMENT ACCURACY

The purpose of this subsection is to develop the error model for the
instrument errors and to show the position measurement accuracy along the
nominal trajectory. The angular measurement accuracy which is attainable
with an optical device is usually specified in terms of minutes or seconds

of arc. The standard derivation of this error has been assumed to be

2
= /2 2 -1 RAD _
O¢ \//il + 4k, (;in IX] ) (4-8)

where
ki = the variance of the angular error when the instrument
is used for star-star measurements
ki = the variance of the angular error when the instrument
is used to measure the subtended angle of the body at
some low altitude
RAD = radius of the body

R = range to body center

The standard deviation of the measurement noise ((q) in (4—1)) is therefore
specified by 0 in (4-8). The error model given by Equation (4-8) is based
on the assumption that, as the body is approached, its size in the field

of view increases, which causes a greater error in detecting the apparent
center (or rim). It is likely that the magnitude of the total tOS rate
should also enter in this error model due to the difficulties of tracking

a moving object. The LOS rate effect has been neglected because of a lack

of information on how to include it.

Since the measurement error is an angular error, the position uncer-
tainty established with such a device is directly related to the range of

the body being observed. The uncertainty in a position measurement €_ as

P
a function of range to the center of the planet of interest is given by

€p = I |R| (4-9)
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where |R| Range to planet,

)
€

Measurement error (standard deviation).

One can, therefore, use (4-9) to calculate the uncertainty in a position
measurement when using the celestial bodies of interest along a nominal
trajectory. The standard deviation of the measurement error, Ge, which
was used in the study for the 10 arc second device is shown in Figure 4-1.
Also, the error in a single position measurement is shown for this instru-

ment.

The main results of this measurement accuracy section are given in
Figure 4-2, which shows the error in position estimate (€P) for a single
observation of various planets as calculated by (4-8) and (4-9) along the
nominal trajectory. This figure indicates that the Earth and Moon provide
the smallest position uncertainty early in the flight. 1In the middle of
the flight, the Earth, Moon, Sun, Venus, and Mars give about the same un-.
certainty (10,000 km). At the end of the flight, however, Mars has by far
the smallest position uncertainty. Also, as seen from the figure, Jupiter
is not of importance in selecting a schedule since the measurement error
for this body is very large during the entire flight. Thus the results
shown in this figure indicate which planets should be selected along the

trajectory in order to obtain good measurement accuracies.

4.5 BODY SELECTION

This section is primarily concermed with determining the direction of
the measurement gradient H for various planets and the Sun, such that the
observations will provide information on all six dimensions of the state
space. The results of determining the direction of the H vectors may then
be combined with the measurement accuracy data in order to select a measure-
ment schedule. This is illustrated by selecting a measurement schedule for

the outbound leg of the midcourse trajectory.
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The LOS to a planetary body is important because the plane of the H
vector associated with a sextant or theodolite measurement to the body is
normal to it. Therefore, this is the plane in which information on the
position of the vehicle can be obtained. This is shown analytically in

[ Table 4-1 and graphically in Figure 4-3. From Figure 4-3, it is seen that
any two star-planet measurements using a planet along OA result in H vec-
tors that lie in a plane perpendicular to OA. The two orthogonal star
measurements shown are identical to one theodolite measurement, i.e., they

: determine the vehicle position in the plane spanned by Hl and H2.

The problem of selecting planetary bodies such that information is
obtained on the three position coordinates of the vehicle state can be
considerably simplified. For interplanetary trajectories with reasonable
launch energies, the trajectory plane and the orbit planes of all the
planetary bodies are nearly in the plane of the ecliptic. As a result,
the problem of determining the vehicle position can be resolved into: (1)
position normal to the ecliptic plane, and (2) the two-dimensional position

in the ecliptic plane.

Information on the vehicle position along the coordinate normal to the

ecliptic can be obtained by measuring the angle between any planetary body
and a background star which has a direction normal to the plane of the
ecliptic. This measurement results in an H vector which is perpendicular

)

| to the ecliptic plane. For out-of-plane measurements, it is therefore
’ reasonable to use the planetary body that provides the best measurement
)

accuracy.

' The problem of determining the two-dimensional position in the tra-
jectory plane is more difficult, since it is necessary to select two bodies
whose measurement H vectors span the trajectory plane. The selection of
3 a schedule for inplane measurements is made on the basis of the location
of the bodies in the ecliptic plane relative to the vehicle as well as the

measurement accuracy data. The location of the bodies in the ecliptic
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plane relative to the vehicle can be determined from the RA of each body
in the vehicle-centered ecliptic coordinate frame. As shown in Figure 4-4.
If the difference between the RA of two bodies is 90°, the H vectors will
be orthogonal and will therefore provide the best estimate of the inplane
components. The values of RA for the planets of interest are shown in
Figure 4-2B with the same abscissa as in Figure 4-1A, and can therefore be

used in conjunction with the measurement accuracy.

| Figure 4-2A indicates that, for the early part of the trajectory, the

J Earth provides the best measurement accuracy. The Moon would also provide
good navigation data in the early part of the trajectory. Although from
Figure 4-2A the Sun appears to provide fairly good measurement data, the
use of this body would not be expected to provide any additional informa-
tion for the first 40 days. This is because the RA of the Earth and the
RA of the Sun in the early part of the trajectory are almost 180° apart,
and therefore, the position information obtained from these two bodies is
almost colinear. Figure 4-5, which shows the propagation of injection
errors and includes the effects of Earth and Sun observations made along
the trajectory, shows that there is, in fact, no improvement in either the

B A~ g,

B-TorB "R end constraints by combining Earth and Sun observations,

rather than using just Earth observations. This figure also indicates no
: change in the B - f error and implies, therefore, that this constraint is
! dependent on the coordinate which is normal to that determined by either
the Earth or the Sun.

In order to obtain a good position estimate along the direction normal
to the position estimate provided by the Earth, it is necessary to use a
body whose RA is about 90° from that of the Earth. This value of RA is
defined by A-A on Figure 4-2B. Any body whose RA passed through the
cross-hatched area will provide good information on the coordinate normal
to A-A for the first 60 days. At 12 hours from injection, the Moon passes
through the area as shown by the figure. During this time, it is possible
to obtain a good measurement of the coordinate normal to A-A, since the

measurement accuracy using the Moon at this time is good as seen in Figure
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l 4-2A. The value of Moon observations at this time is verified by Figure
4-6, which shows a reduction in the ¥ - T error in estimate starting at

about five hours from injection.

| An altemate method for obtaining information on the coordinate normal
f to A-A is to make Sun observations starting at 40 days. At this time, the

Sun crosses the region of interest in Figure 4-2B and takes 40 days to

cross it. The tracking data shown in Figure 4-7, which uses Sun and Earth
observations during the first 100 days, shows that the Sun observations at
about 40 days have the same effect as the Moon in reducing-g . f errors in
estimate. The improvement is not a great as when the Moon was used. This
‘ might have been expected since the measurement accuracy with the Moon is

| greater than that with the Sun at this time as shown in Figure 4-1A.

During the second half of the trajectory, Mars is in a good position
to maintain the position information along the A-A direction. The Earth
and Sun are in a position to permit estimation of the vehicle's position
normal to A-A, although the quality of the measurements is poor. Over the
second half of the trajectory, it is therefore possible to have near ortho-
‘ gonal directional coverage of the trajectory plane by observing Mars and

either the Earth or Sun.

As the result of both the measurement accuracy and direction of the
measurement gradient, H for each body (Figures 4-2A and 4-2B, respectively),
a schedule has been defined for observing planetarv bodies, and is presented
! in Table 4-2. This schedule may be used for measurements with a theodolite
' on an inertial platform, or it may be used with a sextant in conjunction

with a star selection schedule.

An additional body selection schedule has been developed for use with

the low energy trajectory. Figures 4-8A and 4-8B give the measurement

accuracy and RA data, respectively, for this trajectory. This data indi-
cates a more favorable tracking situation because Earth and Mars provide

an average measurement accuracy that is better than that for the nominal
» 4-11
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trajectory. The fact that their measurement accuracies are good allows the
two bodies to provide position coverage of the ecliptic plane. The bodies
differ from being colinear by 10 to 30 degrees. The schedule that has been
defined for the low energy trajectory is given in Table 4-3, and again is

based on measurement accuracies and the position of the bodies.

The body selection schedules of Tables 4-2 and 4-3 have both been

developed without considering the number of observations that should be

i taken for each body. The numbers of observations is important because

‘ each observation requires a certain amount of time and fuel to maneuver
the vehicle into the proper attitude. It is therefore, desireable to
adopt a schedule where the number of observations is not excessive., Ome
of the main considerations in determining the number of observations is
the accuracy of the measurement., During the early part of the midcourse
trajectory, the Earth provides accurate measurements, and near the end
Mars provides accurate measurements. Also, at these times there is only

one body to observe and, therefore, maneuvering is held to a minimum,

The number of observations is also important because there is a

tradeoff between instrument accuracy and the number of observations. This

is shown in Figure 4-9, where the navigation performance is compared for
two sextants with accuracies of 10 arc seconds and 20 arc seconds. Curves
‘ (1) and (2) have been obtained with 162 inplane measurements and 32

[ out -of -plane measurements. The degradation in performance with the

‘ 20-arc-second device at 220 days is 100 percent. This is the type of
increase that would be expected in a linear system where a parameter is
estimated with an instrument having only random errors. The results in
curve (3) show that the error in estimate is reduced very nearly by the

square root of the number of observations

o = INST
EST N
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Curve (3) represents the results obtained for a 20-arc-second device

and four times as many observations as in the other two cases, As seen
from the figure, the error in estimate is almost identical to that for the

more accurate instrument.

4.6 STAR SELECTION

In this subsection, the equivalence between a theodolite measurement
and two sextant measurements is established; the star selection problem is
evaluated in terms of obtaining a good estimate of the vehicle velocity;
and, finally, a technique is developed for selecting a star schedule based

on the body selection as well as the velocity state.

The direction of the LOS can be obtained by using either a theodolite
measurement or two star-planet measurements. Either of these measurements
will determine the vehicle's position in a plane normal to the direction of
the LOS. When the two background stars used with the sextant are
perpendicular (Figure 4-10), the accuracy of the direction of the LOS
measurement should be equal to that obtained with a theodolite. This

equivalence is verified by Figure b4 11 which gives the RMS error in
estimate of position miss (‘ T and B R) at Mars encounter, as a function
of time from Earth injection for both sextant and theodolite observatioms.
Two orthogonal sextant measurements were taken for each theodolite
measurement, The figure indicates that both schemes are equivalent and
provide a miss distance error in estimate of 10 km at Mars. The platform
which was used with the theodolite was aligned with the Earth equator and
equinox of 1950. The stars which were used had the reference direction
shown in Figure 4-10 in the ecliptic plane. This also illustrates the
fact that, as long as two orthogonal measurements are made using an
instrument with uncorrelated measurement errors, the platform orientation

or reference direction is not important.
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It is of interest to note the degradation in performance if the
measurement conditions with the sextant are not optimum. The data in
Figure 4-12 show a comparison of the error in end-point estimates for two
cases. The one case used two sextant measurements at each point with star-

planet lines which were orthogonal. The second case considered the same

measurement pairs, but the star-planet lines were separated by 45 degrees.
The degradation in the estimate at the end time under what would be quite
unfavorable conditions is from 3.1 km to 3.5 km.

If the sextant is used in such a manner that two measurements are not

taken at each point, a number of questions arise:

j a. Is the choice of the reference direction in Figure 4-10 important?

' b. What is the relative importance of the measurements taken using
Star No. 1 and those taken using Star No. 2 once a reference

direction is chosen?

Since the principal uncertainties in the estimate of the terminal miss
are due to errors in velocity estimate, it is reasonable to now consider
the orientation of the reference direction such that maximum informatiom

may be obtained on the vehicle's velocity.

To do this, the problem is again reduced to determining velocity
components in the orbit plane. It is, therefore, reasonable to select the
reference directions in Figure 4-10 so the stars are in the following
directions:

1) Star No. 1 is in the direction of maximum rotation rate of LOS
due to the vehicle's inertial velocity.

2) Star No. 2 is in the direction of zero rotation rate of the LOS
due to the vehicle's inertial velocity.

4-14

HILCO. WDL DIVISION

o &i;vl/‘@/ur%ny’any,



WDL-TR2629

It is the vehicle's Minertial velocity'" that is important because the
celestial body ephemeris in the star background is accurately known and,
therefore, the clestial body's velocity does not provide information

on the estimate of the vehicle's position or velocity.

The direction of the maximum and zero LOS rate are defined by the
G and £ unit vectors respectively which are

I XV r -
Fxv X o (4-16)

=>

and

=L XV -
€= (4-17)

where
r = instantaneous vector between the vehicle and the
celestial body

v = inertial velocity vector of the vehicle relative

to the central body

Also, since the orbit planes, of the celestial bodies and vehicle orbit
Plane are all essentially in the ecliptic plane, the unit vectors 4 and £
are in the ecliptic plane and normal to the ecliptic plane, respectively.
This establishes the ecliptic as the plane of reference ( 8§ = 0°) in
Figure 4-10.

The body selection schedule was chosen so that the two bodies selected
have a difference in RA as close to 90° as possible. Use of the two bodies
in that schedule with stars in the u direction, therefore, provides good
two dimensional inplane position information, and use of any body with a
star in the € direction provides information on the position coordinate
normal to the ecliptic plane. This position information is smoothed to

provide the velocity information.

4-15

bl—lll.(::(:l WDL DIVISION

o ﬁ;\vl_/‘(o/ur%”y)any,



WDL-TR2629

In order to determine the availability of specific stars along the
trajectory that can be used in conjunction with the body selection
schedule, the right ascension of Earth, Mars, and the Sun in a
vehicle-centered 1950 equator of date coordinate system is shown in
Figure 4-13A as a function of time from injection. Figure 4-13B
shows the celestial sphere as seen from the spacecraft, where the
dotted line is the ecliptic plane projected onto the sphere, and some of
the first, second, and third magnitude stars near the ecliptic have been
included. The feasibility of taking a sextant measurement at a given
time can be determined by first selecting a body from the body selection
schedule, and then by using Figure 4-13A and Figure 4-13B to determine
whether the availability of stars and the position of the Sun will make
the observation possible.

In order to illustrate the use of Figure 4-13, an example is now
considered. Assuming the body selection data indicates that the observations
of the Sun and Earth are desirable at 120 days, Figure 4-13A is entered at
this time. As shown by the dotted lines, the right ascensions of these
bodies are projected into the ecliptic plane shown on the celestial sphere
in Figure 4-13B,

The iIntersection of the dotted lines and the ecliptic plane represent
the positions of the Sun and Earth on the celestial sphere as viewed from
the spacecraft at 120 days along the trajectory. Forty by sixty degree
sectors about each ol these points havé been enlarged and are shown in
Figure 14, It can be seen in Figure 14B that both bodies are very near
the ecliptic plane and that the 4 and € measurement directions are
tangent (in the plane) and normal to the plane. Overlayed on each sector
is a20-degree-diameter circular window. The overlay could be made to
any size and shape which corresponds to the vehicle's observations window
constraints, The vehicle windows shown in the figure present the bodies
of interest and the background stars available at the specific time.
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‘ ~ The upper part of Figure 4-14 shows that the first magnitude star
Regulus can be used for a measurement of the position in the i direction.
The use of tlie star would be restricted to a slightly earlier or later

:r time since it is directly in the sun at the time shown. The time

i difference which would be required would depend on the angular separation

between a star and the Sun required for making such a measurement when

using a specific instrument. Slightly earlier in the flight (three

degrees right ascension or about four days), the third magnitude star,

“LEO® in the upper part of the window would be in an ideal position

for a position measurement in the £ direction. It is within the vehicle's
f window for the time shown and not too far from the reference € direction.
! The same type of analysis can be performed for the Earth which is shown

| in the lower portion of Figure 4-14. 1In this case, the star Spica could
be used for a f measurement, and a few days later it would be positioned

for a measurement in the 4 directione.

If these two bodies, Sun and Earth, were to be observed at approximately

the same time, Figure 4-13 also indicates that the vehicle must be

} reoriented 52 degrees in RA and 20 degrees DEC. With a specific control
system, these required excursions could be used to generate data on the

| time and fuel requirements for such a maneuver, The data generated in

\ this manner would likely dictate how often one might want to switch bodies

being observed,

The data in Figure 4-13A can also be used to evaluate the position of
the Sun relative to a body of interest. This would be done to ensure that
the Sun did not "blind" the instrument being used. For example, at the
time of 120 days the Earth is 50 degrees away from the Sun. The figure
alsc indicates that this is as close as the Earth gets to the Sun along
the whole trajectory.
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These data are presented to indicate the manner in which stars might
be selected for use with a specific body. It also indicates that, with a
star tracker with the capability of tracking a third magnitude star, selec-

tion of a star in a specific direction is not difficult.

With the reference direction chosen, it is of interest to determine the
relative importance of inplane measurements in the & direction) and out-of~-
plane measurements (in the £ direction). Although this question is quite
complex because it is a function of the particular trajectory as well as the
navigation time histories up to the point of interest, it is possible to
point out some of the important considerations for a given set of data. Three
sets of data with a fixed number of measurements are shown in Figure 4-15
which indicate the relative importance of inplane and out-of-plane measure-

ments for the nominal trajectoryk.

Curve (1) has been obtained by taking seven inplane observations for
each out-of-plane observation (7:1 ratio). Curve (2) was obtained by l
reversing the ratio (1:7). Curve (